
- 80 W at 25°C Case Temperature
- **7 A Continuous Collector Current**
- 10 A Peak Collector Current
- Maximum $V_{CE(sat)}$ of 2 V at $I_C = 5$ A
- I_{CEX(sus)} 7 A at rated V_{(BR)CEO}

TO-220 PACKAGE (TOP VIEW)

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	TIP150		300	
Collector-base voltage (I _E = 0)	TIP151	V _{CBO}	350	V
	TIP152		400	
	TIP150		300	
Collector-emitter voltage (I _B = 0)	TIP151	V _{CEO}	350	V
	TIP152		400	
Emitter-base voltage			8	V
Continuous collector current			7	Α
Peak collector current (see Note 1)			10	Α
Continuous base current			1.5	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			80	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			2	W
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds			260	°C

- NOTES: 1. This value applies for t_p ≤ 5 ms, duty cycle ≤ 10%.

 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
 - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

TIP150, TIP151, TIP152 NPN SILICON POWER DARLINGTONS

JUNE 1973 - REVISED MARCH 1997

electrical characteristics at 25°C case temperature

	PARAMETER		TEST CONDITION	s	MIN	TYP	MAX	UNIT
I V _(DD) ODO	Collector-base	I _C = 1 mA	I _F = 0	TIP150 TIP151	300 350			V
	breakdown voltage		· E	TIP152	400			
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 10 mA	I _B = 0	TIP150 TIP151	300 350			٧
	Dicandown vollage	(see Note 4)		TIP152	400			
I _{CEO}	Collector-emitter cut-off current	V _{CE} = 300 V V _{CE} = 350 V V _{CE} = 400 V	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$	TIP150 TIP151 TIP152			250 250 250	μA
I _{CEX(sus)}	Collector-emitter sustaining current	V _{CLAMP} = V _{(BR)CEO}			7			Α
I _{EBO}	Emitter cut-off current	V _{EB} = 8 V	I _C = 0				15	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 5 V$ $V_{CE} = 5 V$ $V_{CE} = 5 V$	$I_{C} = 2.5 A$ $I_{C} = 5 A$ $I_{C} = 7 A$	(see Notes 4 and 5)	150 50 15			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 10 \text{ mA}$ $I_B = 100 \text{ mA}$ $I_B = 250 \text{ mA}$	$I_{C} = 1 A$ $I_{C} = 2 A$ $I_{C} = 5 A$	(see Notes 4 and 5)			1.5 1.5 2	٧
V _{BE(sat)}	Base-emitter saturation voltage	I _B = 100 mA I _B = 250 mA	$I_C = 2 A$ $I_C = 5 A$	(see Notes 4 and 5)			2.2 2.3	٧
V _{EC}	Parallel diode forward voltage	I _E = 7 A	I _B = 0	(see Notes 4 and 5)			3.5	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 5 V	I _C = 0.5 A	f = 1 kHz	200			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 5 V	I _C = 0.5 A	f = 1 MHz	10			
C _{ob}	Output capacitance	V _{CB} = 10 V	I _E = 0	f = 1 MHz			100	pF

NOTES: 4. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.56	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W
C _{eC}	Thermal capacitance of case		0.9		J/°C

inductive-load-switching characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{sv}	Voltage storage time				3.9		μs	
t _{si}	Current storage time					4.7		μs
t _{rv}	Voltage transition time		$I_{B(on)} = 250 \text{ mA}$	$R_{BE} = 47 \Omega$		1.2		μs
t _{ti}	Current transition time					1.2		μs
t _{xo}	Cross-over time					2.0		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PRODUCT INFORMATION

^{5.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

PARAMETER MEASUREMENT INFORMATION

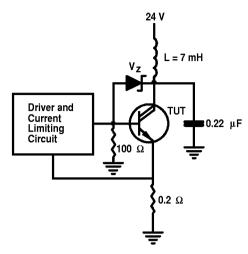


Figure 1. Functional Test Circuit

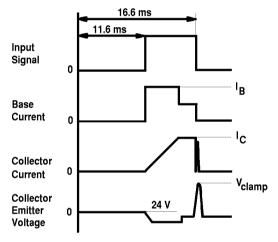


Figure 2. Functional Test Waveforms

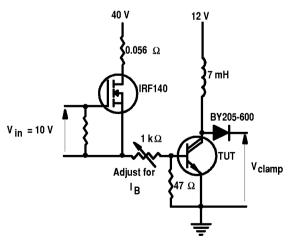
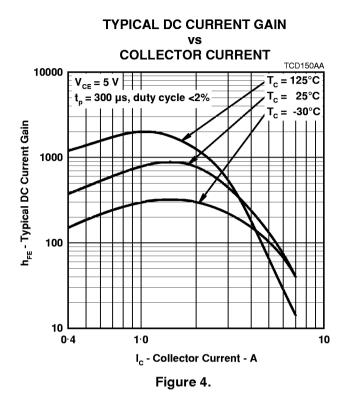



Figure 3. Switching Test Circuit

TYPICAL CHARACTERISTICS

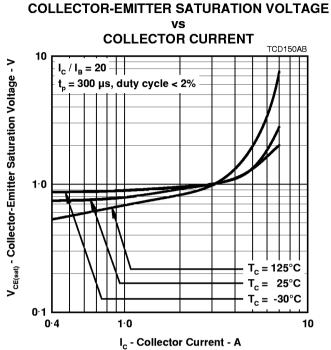
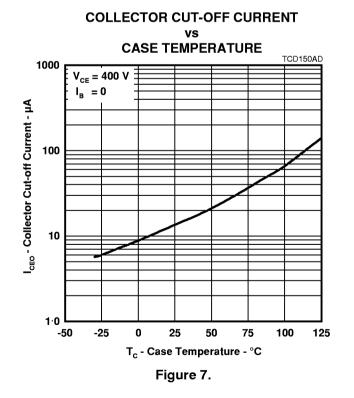
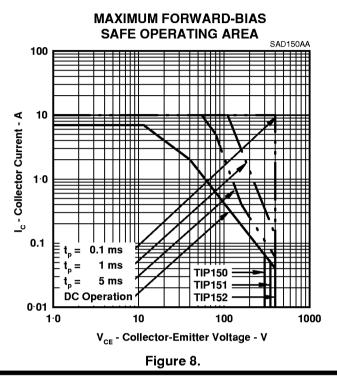
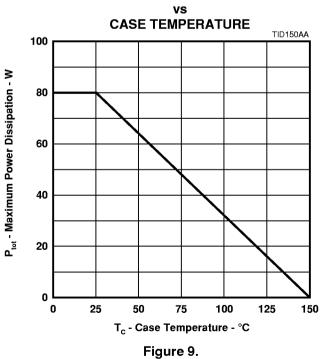




Figure 5.

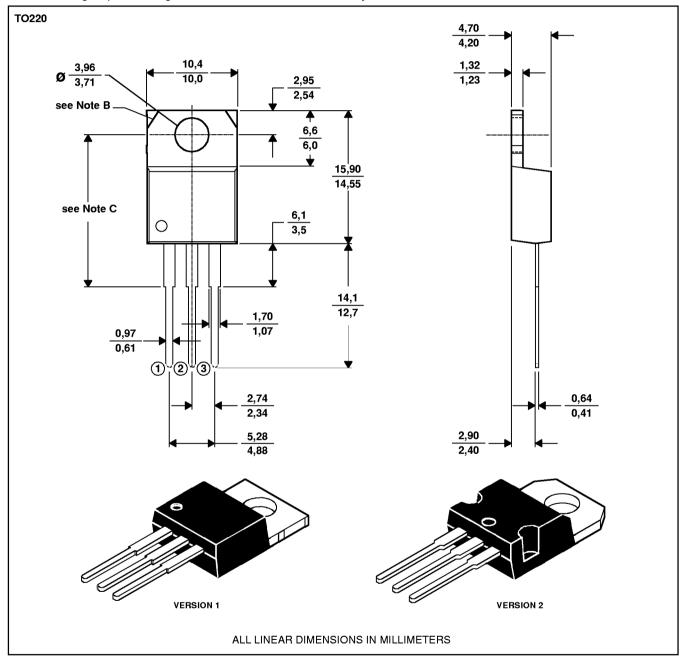
BASE-EMITTER SATURATION VOLTAGE COLLECTOR CURRENT TCP150AC 3.0 $I_{\rm c}/I_{\rm B}=20$ V_{BE(sat)} - Base-Emitter Saturation Voltage - V $t_p = 300\mu s$, duty cycle < 2% 2.5 2.0 1.5 $T_c = -30^{\circ}C$ $T_c = 25^{\circ}C$ T_c = 125°C 1.0 0.4 10 Ic - Collector Current - A Figure 6.



MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION



MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. The centre pin is in electrical contact with the mounting tab.

- B. Mounting tab corner profile according to package version.
- C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm.

MDXXBE

PRODUCT INFORMATION

JUNE 1973 - REVISED MARCH 1997

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

